Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Journal of Immunology ; 208(1), 2022.
Article in English | Web of Science | ID: covidwho-2201413
2.
Topics in Antiviral Medicine ; 30(1 SUPPL):72, 2022.
Article in English | EMBASE | ID: covidwho-1881043

ABSTRACT

Background: Coronavirus disease 2019 (COVID19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) remains a global health emergency even with effective vaccines and limited FDA-approved therapies. To limit mortality and morbidity across the spectrum of disease, the need for therapeutics remains critical. Galectin9 (gal9) is a beta-galactoside binding protein that modulates cell-cell and cell-matrix interactions. In response to SARS-CoV2 infection, it has been shown that circulating gal9 levels are elevated in patient sera with moderate to severe disease. Additionally, it has been reported that gal9 unexpectedly may competitively bind the host ACE2 receptor, potentially impeding viral entry. Therefore, we hypothesized that early recombinant gal-9 treatment post infection may prevent binding of the virus to susceptible host cells resulting in decreased severity of SARS-CoV2-associated disease. Methods: To determine the therapeutic potential of gal9 for treating COVID19, we infected K18-hACE2 transgenic mice intranasally with 104 particle forming units (PFU) of SARS-CoV2. 6 hours post infection (hpi), mice were treated with a single dose of 30 ug of recombinant human gal9 (rhgal9) or PBS intraperitoneally and subsequently monitored 12 days for morbidity. Subgroups of mice were humanely euthanized at 2 and 5 days pi (dpi) for viral plaque assay, flow cytometry, and protein analysis from lung tissue and bronchial alveolar lavage (BAL). Results: We found that mice treated with rhgal9 during the acute phase of infection exhibit improved survival compared to PBS treated animals (25%, p<0.0001). We found that at 5 dpi, rhgal9 treated mice exhibited enhanced viral clearance in the BAL but not in the lung parenchyma. Additionally, we found increased CD8 T cell (p<0.001) and decreased neutrophil (p<0.05) frequencies in the lung at 5 dpi. Finally, we found that BAL fluid had elevated levels of Type 1 Interferon [IFNa (p<0.01) and IFNb (p<0.01)] at 2 dpi and increased MyD88 proinflammatory cytokines [IL1a (p<0.05), IL1b (p<0.01), TNFa (p<0.05), and MIP1a (p<0.05) at 5 dpi. Conclusion: Our study suggests that rhgal9 treatment may be potentially therapeutic for treating acute COVID19. Our data suggest that rhgal9 treatment in combination with other anti-inflammatory mediators may curtail damaging inflammation associated with SARS-CoV2 disease. Further studies are required to determine the optimal time, combination and duration of treatment pi to effectively target the gal9 pathways.

3.
Topics in Antiviral Medicine ; 30(1 SUPPL):65, 2022.
Article in English | EMBASE | ID: covidwho-1880180

ABSTRACT

Background: Galectin-9 (Gal-9) is a β-galactoside-binding lectin involved in immune regulation and viral immunopathogenesis. Multiple recent reports demonstrate that plasma levels of Gal-9 are elevated in the setting of severe COVID-19 disease. However, a causal role of Gal-9 in SARS-CoV-2 pathology remains to be elucidated. Here, we determined the impact of Gal-9 on SARS-CoV-2 replication and pro-inflammatory signaling in immortalized and primary human airway epithelial cells (AECs). Methods: Dose-dependent cytotoxicity of recombinant human Gal-9 in the Calu-3 AEC line was determined by MTT assay. Calu-3 cells were infected with SARS-CoV-2 isolate USA-WA1/2020 (MOI=0.01). Primary AECs were isolated from healthy donor lung transplant tissue, cultured at air liquid interface (ALI), and infected with SARS-CoV-2 lineage P.1 (MOI=0.1). SARS-CoV-2 replication was assessed by RT-PCR quantitation of the nucleocapsid (N) gene, immunofluorescence assay (IFA) of N protein, and titration of supernatant (TCID50). Viral entry was measured using luciferase activity of VSV-SARS-CoV-2 S-ΔG-Luciferase reporter pseudovirus. ACE2 and TMPRSS2 cell-surface expression were measured by flow cytometry. Pro-inflammatory factors (IL-6, IL-8, and TNFα) were detected by RT-PCR. Total RNA-seq was used to evaluate Gal-9 effects on the host transcriptome. Groups were compared by Student's t-test, and differential expression analyses were performed using DESeq2. Results: Gal-9 reached 50% cytotoxicity in Calu-3 cells at 597 nM. Gal-9 significantly increased SARS-CoV-2 expression (8.1 to 25.5 fold;p<0.0001) and infectious virus release (1.9 to 17.8 fold;p<0.038) in a dose-dependent manner in Calu-3 cells. Pseudovirus entry into Calu-3 cells was enhanced by Gal-9 (2.4 to 5.6 fold;p<0.0016), and the enhanced entry was inhibited by anti-ACE2 antibody (p<0.0027). Cell surface ACE2 and TMPRSS2 expression were unaffected by Gal-9. Gal-9 treatment accelerated virus-induced expression of IL-6, IL-8, and TNFα (p<0.018) in Calu-3 cells. Gal-9 increased SARS-CoV-2 production (p=0.03) and pro-inflammatory factor expression (p<0.05) in primary AECs (N=5 donors). RNA-seq data revealed that Gal-9 significantly induced IL-17, EIF2, IL-8 and IL-6 signaling pathways in the setting of SARS-CoV-2 infection. Conclusion: Gal-9 facilitates SARS-CoV-2 entry, replication, and virus-induced pro-inflammatory signaling in AECs ex vivo. Our data suggest that pharmacologic manipulation of Gal-9 should be explored as a SARS-CoV-2 therapeutic strategy.

SELECTION OF CITATIONS
SEARCH DETAIL